

Weighing Al delivery between Openstack & Kubernets

Feimin Yuan (John)

F5

26 Aug 2025

Agenda

Where we are at running GPU infra

Opensource infra becomes the norm

Network evolve with accelerated stack (DPU)

Where we are at running GPU infra

GPU infra scales are vastly different

Datacenter scale

HPC or K8s on bare-metal

Low-latency E-W full mesh network

Close-source technology

Astronomically high cost

Cluster scale

Bare-metal, K8s on bare-metal

Multiple host high-speed network

Mixed close-source and opensource technology

High in investment & operation

Host scale

 $VMs,\,K8s\,on\,VMs$

Often within single host network

Prefer Open-source technology

Moderate in investment & Operation

BECAUSE

GPU infra are tilting more to inferencing

Foundation Large Models

Meta Llama 2 70B

OpenAI ChatGPT4.0

Mainstream LLMs see in its training size will slow down, although the current hunger for GPU cluster scale is still massive.

Focus is on approximating human abilities and becoming next generation of internet platforms

Industry models focus on delivering and continuous delivering services and functions in a close feedback loop with both models and datasets.

e.g. Tesla FSD trained on Dojo architecture requires continuous new data retraining, model evolution.

Open source models lowered access barrier for more enterprise to develop customized human facing models

Change from cluster scale to host scale

Al cloud provider	Max GPUs/Instance	GPUs Type
Provider 1	8 GPUs	Nvidia H100, A100
Provider 2	8 GPUs	Nvidia H100, A100
Provider 3	16 GPUs	Nvidia A100 (A2)
Provider 4	8 GPUs	Nvidia H100, A100
Provider 5	4 GPUs	Nvidia Tesla GPUs

Reduction of scale brings more opp for open infrastructure

Opensource infra becomes the norm

Host scale brings more rational investment in Al infra

OBJECTIVE 1

Drive down cost

Leverage open-source platforms and tools

Maximize the use of server resource/components

OBJECTIVE 2

Reduce Complexity

Simplify GPU infra software stack

Adopt proven technologies

OBJECTIVE 3

Deliver Security

Extend isolation and control into Host tenant Network(not just DC network)

Remove unnecessary hops(CPU, host memory)

Choices of infra are not made but tried

K8s on Hypervisor VM

Openstack manages hardware resource and GPU pass through

K8s manages AI network and workloads

K8s on Container VM

K8s manages hardware resource and GPU with kube-virt

Tenant K8s inside VM manages Al network and workloads

vK8s on K8s

K8s manages hardware resource, GPU operator and network

vK8s through customized API endpoint manages AI workloads

Network evolve with accelerated stack (DPU)

Network stack evolves from cluster scale to host scale

Tenancy is easy with opensource tools

- Tenancy with k8s in VMs are easy to achieve.
- But network delivery and security is not.
- DPU as the new pathway for accelerated AI network becomes the key point of control

Putting the infra stack to test

Server-1

OS: Ubuntu 22.04

NVIDIA DOCA

DPU Firmware

F5 BNK GA Software

Kubernetes: 1.30

Calico CNI: 3.29.1

• Nginx: 1.29.0

Server-2

OS: Ubuntu 22.04

Kubernetes: 1.30

• Calico CNI: 3.29.1

• Nginx: 1.29.0

Server-3

• OS: Ubuntu 22.04

• Kubernetes: 1.30

Cilium CNI: 1.17.6

Nginx: 1.29.0

Server Specification List

Server Type	Specifications
Lenovo SR675	CPU: AMD EPYC 9334 32C x2 Memory: 2TB Disk: 960GBx2 & 7.68TBx2 GPU: NVIDIA L40S DPU: NVIDIA BlueField-3 B3220
Lenovo SR675	CPU: AMD EPYC 9334 32C x2 Memory: 2TB Disk: 960GBx2 & 7.68TBx2 Network: - ConnectX-7 Infiniband GPU: NVIDIA L40S
Lenovo SR675	CPU: AMD EPYC 9334 32C x2 Memory: 2TB Disk: 960GBx2 & 7.68TBx2 Network: - ConnectX-7 Infiniband GPU: NVIDIA L40S

Deliver AI workloads fast and securely

AI API delivery metrics - Capacity

- An increase of 30+ times helps delivery of AI API at large scale on a single function/platform.
- Maintaining same performance whether it is a large tenant or multiple small scale teanants.

AI API delivery metrics – Token Response

- A reduction of 3000% helps delivery of Token response faster to user.
- Allows AI systems to quickly return inference and continue to next batch of data.
- Impacts overall LLM user experience significantly.

AI API delivery metrics – Host CPU consumption

- A reduction of **99%** in Host CPU consumption to allocate server resources to AI workloads.
- Networking completely offloaded to DPU where acceleration removing bottleneck
- Serves multi-tenancy with GPU, in VM.

%Cpu8 : 53.7 us, 17.0 sy, 0.0 ni, 93.9 id, 0.0 wa, 0.0 hi, 29.3 si, 0.0 st %Cpu9 : 5.5 us, 1.3 sy, 0.0 ni, 93.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

F5 BIG-IP Next for Kubernetes

Deployed on NVIDIA BlueField-3 DPUs

F5 and NVIDIA deliver highperformance networking and security for AI factories, simplifying operations through multi-tenancy and optimized GPU utilization.

Solving the unique challenges Al workloads bring to data centers

Traffic Management

Intelligent Load-balancing Ingress / Egress High-Performance

Scale and Flexibility

Seamless scale-out Multi-tenancy

Security

Firewall with DDoS mitigation Intrusion Prevention Encryption and Certificates

Observability

Traffic analytics and capture

Unified traffic management and security visibility

A practice book for getting Al infra ready for inferencing

Data & model owners want SECURITY, EFFICIENCY & RESILIENCY from AI cloud.

21 @ 2024 F5

